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A theory is developed, based on theoretical-group analysis, to describe the linear, reversible, 
time-dependent response of an icosahedral quasicrystal, containing point defects, to a stress 
field and known as anelastic relaxation. We obtain also anelastic relaxation relationships for 
the practical Young's, shear and Poisson's moduli. 

1. I n t r o d u c t i o n  
Several workers have produced icosahedral and 
decagonal quasicrystals [1-3] by rapid solidification 
and many of them have used the composition of, 
approximately, 14a t% Mn, corresponding to the 
formula A16Mn. In addition, there is now a rapidly 
expanding list of  reports of quasicrystalline phases in 
different alloy systems produced by different process- 
ing methods. Only in A1-Mn and closely related sys- 
tems, however, has enough work been done to form a 
reasonably detailed understanding of the physical 
metallurgy of the quasicrystalline phases. Notwith- 
standing only some models about the actual atomic 
distribution have been made [1, 4, 5] and new experi- 
mental works will be necessary to decide the ones 
which are correct. In this way the anelastic behaviour 
would be one of  the phenomena to research in future. 
In this paper we look for the more interesting elastic 
and anelastic properties of icosahedral quasicrystals. 
The point defect anelastic relaxation will be surely 
used to find the actual location of  different kinds of 
atoms. The model proposed by Guyot  and Audier [4] 
assumed a skeleton building from an inner aluminium 
icosahedron and an outer manganese icosahedron. 
Moreover, we have to put some spare aluminium 
atoms at the middle of the axis of the outer icosa- 
hedron and we need to replace some aluminium 
and manganese atoms by each other. The details of  
such structure would be clarified by internal friction 
methods. 

The generalized Hooke's  law can be expressed, in 
terms of the commonly used single index notation, as 
[6] 

6 

~r, = ~ cue j i , j  = 1 . . . . .  6 (1) 
j - I  

where c• are the elastic stiffness constants. 

In terms of the elastic compliances 

6 

~i = ~ su aj i, j = 1 . . . . .  6 (2) 
j = l  

The number of different elastic stiffnesses or elastic 
compliances stays between a maximum of 21 and a 
minimum of 2 for isotropic solids. Still further sim- 
plifications of Hooke's law for crystals can be made 
if, instead of the usual components of  stress and 
strain, six independent linear combinations of these 
are chosen, which possess certain fundamental sym- 
metry properties associated with the crystal in question. 
These linear combinations, which are known as sym- 
metry coordinates of stresses and strains, or as 
symmetrized coordinates, are obtained by means of 
group theory [7]. The symmetrized coordinates are 
classified as Type I and Type II. The special feature of  
strains of Type I is that a crystal subjected to such a 
strain is not lowered in symmetry by the deformation. 
On the other hand, a crystal under a Type II strain is 
lowered in symmetry. Furthermore, whenever a sym- 
metrized stress is decoupled from all the symmetrized 
strains, except the one which corresponds to it, 
Hooke's law reverts to the simple form 

~ = s~G (3) 

where 7 denotes the symmetry designation and s~ is 
the appropriate symmetrized compliance. For lower 
symmetry crystals decoupling occurs less frequently 
until finally, for the triclinic case, all six stresses and 
strains are of Type I and a set of completely coupled 
equations is obtained. The reason is that triclinic 
crystals show no symmetry and there is no simplifica- 
tion of Hooke's law as a consequence of  symmetry 
considerations. 

The icosahedral quasicrystals have point group 
symmetry m35 (Fig. 1) which is inconsistent with 
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Figure 1 Stereographic projection of the symmetry elements of the 
icosahedraI group m~3. 

lattice translations. However icosahedral symmetry 
means that all the average properties, but not the 
actual locations of the atomic species, are invariant 
through the icosahedral symmetry operations. I f  one 
specimen is rotated through the angles of  this point 
group, selected area electron diffraction patterns 
clearly display the six five-fold, ten three-fold and 
fifteen two-fold axes characteristic of  icosahedral 
symmetry [2]. 

The elastic properties and hydrodynamic modes of 
icosahedral structures and Penrose lattices have been 
discussed elsewhere [8]. In principle, the phason 
modes (or internal rearrangement modes) may be 
overdamped and not propagate. The phasons might 
be observable in an inelastic neutron scattering experi- 
ment and the existence of  three phason branches was 
discovered independently by Kalugin et al. [9]. In this 
paper we will assume only a simple elastic behaviour 
and we wilt deal with the fourth-rank tensor of  elastic 
constants. We will reduce the independent elastic con- 
stants by symmetry arguments and we will use them to 
deal with the anelastic properties due to point defects. 

2. Elastic properties 
We assume an icosahedral crystal, as we can see in 
Fig. 2, with a five-fold symmetry axis along the z axis. 
The x - y  plane transforms to a 3, t /complex plane by 
the following 

-~ = x + iy (4) 

t 1 = x - i y  

Z e 

~, ~ " ~ ' ~  Z / 

Figure 2 Icosahedral quasicrystal "cell" and Euler's angles. 

It is easy to see that the new coordinates transform by 

~ exp (2rd/5) 

r/ - ,  exp (-2~ci/5) (5) 

Z - 4 " Z  

As in the hexagonal symmetry 

cz=z, c~¢~, c¢¢,~, c¢,zz, Ccz,: (6) 

will not be zero. 
One of the two-fold axis, perpendicular to the z axis 

interchange 
Z - ~  - -Z  

which do not affect the elastic constants. 
Now, if we transtbrm the elastic constants by 

1 0 0 

® = 0 c o s 0  - s i n 0  (7) 

0 sin 0 cos 0 

where 

and 

cos 0 = ( s )  

= 37.377 (9) 

2 

is the golden number [10], we obtain the fourth-rank 
tensor for the new x, y, z axis [Fig. 2]. 

Cll a2c12 + b2c13 

a4cu + 2a2b2(q 3 + 2C44) 
-{- b4c33 

a2cl3 + b2Cl2 

aZb2ql + (a 4 -}- b4)c13 

-F a262(c33 - 4c44) 

a4cll + 2a2b2(ci3 + 2c44) 
-t- b4c33 

ab(ci2 - q3) 0 

a3bcll + ab(b2 - a2) 0 

X (C13 -t- 2 q 4  ) - -  b 3 a c 3 3  

ab3clt + ab (a 2 - b 2) 0 
x (c13 + 2c44 ) - a3bc33 

a2b2(cll - 2c13 -I- C33 ) 
q_ (a 2 _ b  2)2 c44 

o (lo) 

0 0 

b 2 c66 + a 2 c44 ab (G6 - c44) 
a 2 c66 + b 2 C44 
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where a = cos 0, b = sin 0 and c66 = (cjl - q2)/2. 



With a two-fold axis perpendicular to the z '  axis the 
c~kt have to have at least the trigonal symmetry, and 
the following relationships can be obtained 

( a  4 - -  1)cl~ + 2a2b2c13 

a2b2cH _ 2a2b2cl3 

+ aZb2c33 

a2b2cll  + b Z (b  2 

+ a262c33 

-'1- 4a262c44 q- b4c33 = 0 

( t l a )  

+ [ (a  2 - -  b 2) - -  a2]c44 

- aZc66 = 0 ( l ib )  

- -  a2)c13 - -  4aZb2c44 

- -  a2c l2  = 0 ( l lc)  

b3 a c u + ab (a s - b2)c13 -I- 2ab(a  2 - b2)c44 

- a3bc33 = 0 ( l ld )  

a3b Cil - -  2ba3c13 + 2ab  (b 2 - a2)c44 

- b3ac33 + a b q 2  = 0 ( l le)  

Starting from Equations 1 1, it can be shown that 

c)l -- c13 - c33 + c~2 = 0 (12) 

cl3--  c44 + c66-- q2 = 0 (13) 

2c44--  cll + Cl2 = 0 (14) 

Then, there are only two independent elastic constants 
as in isotropic solids. We have to take into account 
that all the average behaviours, but not the local 
properties, are invariant through the icosahedral 
symmetry group. 

Following Nowick and Heller [7] we will consider 
a basis vector made up of the components of  the stress 
field which we wish to reduce to appropriate linear 
combinations known as "symmetry coordinates of 
stress". Weyl [1 1] has dealt in a general way with the 
problem of the transformation of tensor components 
when they are to be represented as components of a 
vector in a hyperspace. The conversion from 2-index 
to 1-index notation is shown to be 

(7"11 ~ 0"1 

0"22 ~ 0" 2 

0"33 --~ 0- 3 

0"23 ~ 0"4 

O31 ~ 0"5 

if" 0"12 ~ 0"6 ( 1 5 )  

The same conversion applies to the strain components 

8~ ~ ~k- 
In terms of the Weyl components forming a 6-vector 

6, we write the transformation into "symmetry coor- 
dinates" as 

6 ' = V ~  

~' = I/2 (16) 

where V is a 6 x 6 unitary matrix which performs the 
desired reduction. The specific form of  V required to 
reduce 6 to symmetry coordinates depends on the 
point group symmetry of the crystal. The result is 
obtained using the fact that V must be unitary, plus 
information contained in the usual character tables 
[12]. The character table of the icosahedral point 

T A  B L E  I Charac te r  table o f  the icosahedral  g roup  Y 

E 12C 5 12C5 z 20C3 15C 2 

A 1 1 I £ 1 x 2 + y2 + z 2 

T 1 3 z z -I 0 --1 ( x , y , z )  
T 2 3 "c t "c 0 - I  
G 4 - I  --1 t 0 
H 5 0 0 - 1  I 

group is shown in Table I. In such a way we obtain 
the V matrix as 

A 

-f 
k = l  2 3 4 5 6 

1/45 o o o 
2/x~ - - l /x /6  - l / x / 6  0 0 0 
0 1/~,f2 - l/x/2 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 

(17) 

The s)q-nmetry coordinates are totally decoupled to 
each other. We obtained them by 

°"(~') = Z v(~') (18) a,v a,v,k ffk 
k 

where 7, a and v denote the irreducible representation 
(i.r.), the degeneracy of y and a repeat index to cover 
the case where a given i.r. appears more than once in 
the reduction to symmetry coordinates. The following 
six symmetry coordinates of  stress and correlated 
strains are obtained 

(l/x/3) (0-u - 0.22 -- 0'33) A 

( l / x / - 6 )  (20"11 - -  0"22 - -  0"33 ) 

(1/,,/~) (0.= - ~.) 
6' = H (19) 

N/2  0.33 

~ / 2  0.31 

~ 0 " 1 2  

In mentioning the i.r.'s it is important to give special 
attention to the particular i.r. which is totally sym- 
metric, i.e. representing complete invariance under the 
group operations. Such an i.r. occurs tbr every point 
group and is the first one listed in the character table. 
The quantity 0",(A) is proportional to the hydrostatic 
stress while 0"~(u) represents the shear stresses. 

The symmetry coordinates are orthogonal to each 
other, in view of  the unitary property of  the V matrix. 
In a particular coordinate system it is always possible 
to select a combination of  stresses which corresponds 
to a single symmetry coordinate by choosing the com- 
bination of  stresses which makes all symmetry coor- 
dinates, except the one of  interest, equal to zero. 

The representation structure F (a') of  our stress 
hypervector is 

F(0' ')  = A + H (20) 

where A and H are the stress-active i.r's. 
In terms of the Weyl vector components, Hooke's 
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TABLE II Symmetrized stresses, strains and compliances of 
icosahedral quasicrystals 

A ~ + a 2 + a 3 s u + 2s~2 s I + s2 + s3 

H 2at - -  i f2 - -  0"3 s l l  - -  s12  2~1  - -  82 - -  83 

0"2 - -  0"3 S[I  - -  S [2  82 - -  83 
{74 S / I  - -  S12 ~4/2 

0- 5 SI I  - -  S12 55/2 

0" 6 S I t  - -  S12 86/2 

law relating the stress and strain components takes the 
form 

6 

ek = ~ ~kt at (22) 
/ = 1  

where Okt are related with the usually defined coefficients 

Ski [6] by 

Okt ~ Ski 

~kJ = 1/2Skl 

1 
Okl ~ ~ Skl 

for k and I both ~< 3 

for k and l both i> 4 

f o r k  ~< 3, l ~> 4 o r  

vice versa 

(23 )  

The symmetry coordinates of  stress and strain must be 
also linearly related. Let us express this by 

~' = S ~' (24) 

where S = V S V  t. 
Thus the symmetry elastic compliances are 

Sll = sll + 2s12 (25) 

$22 = $33 = S,~ = $55 = $66 = s . - s ~  

(26) 

and we obtain the results shown in Table II. 
The first symmetrized coordinate is a hydrostatic 

stress and does not change the symmetry of the crys- 
tal. The others belong to the Type II symmetrized 
coordinates and they change the symmetry of the 
quasicrystal, reducing it. 

3. Po int  d e f e c t  a n e l a s t i c  re laxat ion  
The point defects in an icosahedral quasicrystal have 
to belong to the point groups 

Ds~, D3d, D2~,  C2h and C i (27) 

All of which are subgroups of the icosahedraI point 
group Y. Following Nowick and Heller [7] again the 
point symmetry of the point defects are called the 
defect groups, designated by fga and of order hd. The 
order of the defect group must be a submultiple of  the 
order of the crystal hx and 

nd = h~/h~ (28) 

represents the number of  configurations or orientations 
of the defect which are physically distinguishable from 
each other, but are crystallographically equivalent in 
the original lattice. 

In the same way we define 

n~ = hx/h~ (29) 

where h~ is the order of the tensor group fgt determined 
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by Nd, N~ and the type of field under consideration. 
The point groups (Equation 27) are the tensor groups 
of the defects. A crystal containing a given defect wilt 
undergo relaxation in the presence of a particular type 
of external field if and only if nt > I. For  anelasticity 
the nt criterion can be converted into the following 
simple rule. Anelastic relaxation may be produced by 
any defect whose symmetry belongs to a lower system 
than that of the crystal. The icosahedral quasicrystal 
is isotropic and all the point defects can produce 
relaxation. 

The set of  concentrations of defects, Cp, in the 
various orientations, p = 1, 2 , . . .  na, are the com- 
ponents o f a  hypervector (~ in a space of dimension rid. 
This basis vector can be reduced by an na x nd unitary 
transformation matrix, which takes C' into the vector 
(~' whose components are symmetry coordinates 

C' = WC (30) 

In a crystal containing defects of a given symmetry 
a symmetrized compliance constant can undergo 
relaxation only if there exist symmetry coordinates of  
concentrations belonging to the same i.r. 7. In view of 
this selection rule, it is only necessary to know the 
representation structure of the concentration, F(C), in 
order to determine which coefficients of  the crystal 
may undergo relaxation due to the presence of the 
defects. A simpler method, making use of the "cor- 
relation theorem" [12], avoids the necessity to examine 
the effect of  each symmetry operation on the defect 
orientations. The theorem states that if 7 is an i.r. ofaJx, 
the quantity n~, the number of times that the i.r. 7 
appears in F(C), is equal to the number of times that 
the A~ representation appears when y is reduced in Nd- 
In order to use the correlation theorem one could 
carry out the reduction of Y in Nd with the aid of the 
character tables for both groups fqx and ~d [~t]. 
Table III shows the results for the different point defect 
groups. We can see that, as we hoped, all the possible 
point defects undergo relaxation. There is one amend- 
ment to these selection rules if only a simple species of 
defects is present in a total concentration ZCp that 
remains constant. This condition implies that we do 
not permit diffusion of  defects into and out of  the 
crystal, or a "reaction" whereby Y.Cp may change at 
expense of the concentration of another type of defect. 
Accordingly, an auxilliary condition is imposed on 
the problem namely 

~ C p  = Co = constant (31) 
p 

where C 0 is the total defect concentration in the 
crystal. This auxiUiary condition forbids any change in 
the symmetry elastic compliance s~j + 2 s~2 as the 
result of  an applied field. Due to the particular spatial 
structure of the icosahedral quasicrystals it is slightly 
probable to find near-neighbour sites with the same 
point group symmetry. We may expect that the 
s~ + 2 s12 compliance undergoes relaxation as a result 
of atom jumps between different species of sites. More- 
over we expect the number of configurations of each 
defect, nd, to be different in an actual icosahedral 
quasicrystal. It is clear that more work is necessary to 
elucidate this fact. 



T A B L E 111 The quantity n t for various defect symmetries and results of  the "correlation theorem" 

Dad Dad D2h Czh Ci 

h e 20 12 8 4 2 
n t 6 10 15 30 60 

A Aig Alg Ag Ag Ag 
H E~g + E2g + Alg 2Eg + A~g 2Ag + Big + B2g + B3~ 3A~ + 2Bg 5Ag 

A + H A + H A + 2H A + 3H A + 5H 

4. Anelastic relaxation of practical 
modu l i  

In order to generalize the equations of elasticity of 
crystals to allow for time-dependent effects, the val- 
idity of  the standard anelastic solid model will be 
accepted for each symmetrized coordinate decoupled 
one for another (13). In this case Equation 3 leads to 

~.~ + z<,~ = s~a.~ + r~,sv~ ~. (32) 

where r and u denote relaxed and unrelaxed compli- 
ances, respectively, and z~.e is the relaxation time at 
constant stress. 

For  a time dependent sinusoidal longitudinal stress 
along the X'  axis and an analogue response for the 
strain, that is 

0" 1 = (701 exp (icot) (33) 

ej = (e}~) _ e}2)) exp (icot) (34) 

it can be shown that 

1 ( s"  + (s" 6,,,) 2 2 iconic,, a~,, , = - -  CO "gas" - -  , 
2 2  el ~ 1 + 6 o % , , ,  

S t + (S '  - -  as,  ) 692T 2 - -  icoG¢ 3,,)  ~r,( t + 2 2 0"1 
1 + co %~, 

(35)  

, = 1 ( s "  + (s" - a,~) oo2zocz _ ic~z~,, a,,, 
\ 2 2 e2 ~ 1 + co %,,, 

1 s'  + (s'  - fis,)fO2%s,a _ i ( o r o ~ , a , , ~  , 

2 1 q-  (D2T2t7 s, ) 0"1 

(36) 

wheres" = Sll + 2 s12,s '  = 2(sll - Sl2)anda, isthe 
relaxation of the compliance s. 

We can not observe orientation dependence as we 
hoped. Moreover, the Young's modulus is defined by 

/ 
E(L) l = -Tel (37) 

o" 1 

and, if 68,, = 0, r~,,, = 0, we can obtain the dynamic 
Poisson's ratio [13-15] 

v(co) = vj - iv 2 - 
< 

2 2 ico%,, 5(v)  V r + V u ~O Ted - -  
= 2 ~ (38)  

1 + 69 z~¢ 

where vr = (E,. /2Gr) - 1, Vu = (Eu /2Gu)  - 1, 
a(v) = ( 1 _  v,.)ao/E), % = (E,./E,~) z,~ is the relax- 
ation time at constant strain, G is the shear modulus. 

For a shear stress 0-23 we obtain 

G -1 (co) = J1 - iJ2 

s'  + (s '  - 6~,) c02z~,,2 _ icoro,,  a, ,  
1 + co2z2,, 

(39) 

In longitudinal vibration we could compare the 
experimental results with Equations 37 and 38. In 
shear tests we may hope a behaviour to be adjusted by 
Equation 39. 

5. Discussion and conclusions 
We have shown, by simple arguments from the sym- 
metry of  the icosahedral group, that the icosahedral 
quasicrystals are isotropic under stress fields and the 
anelastic behaviour can be reduced to the classical 
properties for isotropic materials. 

Also we have shown that all the possible point 
defects can undergo elastic relaxation and we can 
expect internal friction phenomena under periodic 
stresses from them all. 

However we have to work out the problem of  the 
actual location and symmetry of  the defects in the 
spatial structure of the whole icosahedral quasicrystal. 
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